什么是数据分析师-什么是数据分析师?
大家好,今天小编关注到一个比较有意思的话题,就是关于什么是数据分析师的问题,于是小编就整理了4个相关介绍什么是数据分析师的解答,让...
扫一扫用手机浏览
大家好,今天小编关注到一个比较有意思的话题,就是关于数据分析目的的问题,于是小编就整理了2个相关介绍数据分析目的的解答,让我们一起看看吧。
数据分析主要包含五个步骤:
数通畅联的DAP数据分析平台主要有以下三个优点:
数通畅联专注于企业IT架构、SOA综合集成、数据治理分析领域,感谢您的阅读与关注。
数据分析过程主要有下面6个步骤:
1、明确目的:确定分析需要解决的业务问题,最好能将业务问题转化成数学问题。
2、数据收集:基于对业务问题的理解,通过各种方法和渠道收集能支撑业务分析的数据源,不仅限于数据库,也可以考虑一些各种部门的公开数据,比如统计局、大数据局等部门。
3、数据处理:通过技术手段,对收集的数据进行提取、清洗、转化和计算,异常值处理、衍生字段、数据转换等具体步骤。
4、数据分析:这里主要有两个技术手段,统计分析和数据挖掘,找到相关的数据关系和规则,然后利用业务知识来解读分析结果。在这里有一点需要说明,分析技术是为业务服务的,如果你的结果不能有助于业务问题的解决,统计分析和数据挖掘技术再好再高明,也没有意义,这点是我们做数据分析的人要谨记的。
5、数据展示:分析数据的可视化,在整个数据分析过程中也比较重要,这个步骤是将你前面做的工作量尽可能的展示给大家,具体的可视化技术,可以百度看下,是一个非常专业的学科。
6、报告撰写:展示你整个分析过程中的价值部分,在这里需要结构清晰地展示你整个分析过程,包括你的分析结果和依据,以及你结合业务知识提出的解决方案,最终解决你第一步的业务问题。然后基于报告将分析过程进行落地,为企业产生价值。
如果从不同层面来划分,数据分析还可以得到下面这样的流程。
特别地,在分析层,我们可以分成两部分,一个是建模分析,另一个是描述性分析。
以上是个人的观点,希望对你有帮助。
感谢邀请。数据分析有极广泛的应用范围,典型的数据分析主要包含以下三个步骤:
1、探索性数据分析
当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析
在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析
通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
之前在CDA学了数据分析现在在做电商,感觉就是首先是定需求、定目标,然后提数,做数据处理分析、出报表,研究关键指标,提出运营策略,监督运营情况,复盘,得出结果,这样的过程
谢谢邀请!
一、数据分析流程:
1.明确分析目的与思路:
一切以解决业务问题为中心,依据分析目标明确思路,打开分析视角,使数据分析框架体系化。
2.数据收集与预处理:
数据来源有Excel/CSV/SQL数据库/NoSQL数据库/Hive数据仓库/外部数据,从数据来源收集数据后需要做清洗工作,包括缺失值、错误值、重复值、异常值等都要处理好,当然还有转换、拆分、合并等等工作也可能要做,这样才能满足后续数据分析的要求。
3.数据分析与挖掘:
使用各种数据分析方法与分析工具(如Excel/SQL/spss/SAS/Tableau/Power BI/python)进行分析挖掘。
4.数据可视化并生成报告:
使用专业化图表,也可以结合表格,最后以报告方式输出数据分析成果。
二、岗位内容:
更多资讯请关注笔者头条号“语凡提”,向智慧化身阿凡提致敬,致力于分享大数据/数据分析/人工智能***!
先说结论,
问题1回答:数据分析技术简单来说可归类为统计分析技术和数据可视化两类。
问题2回答:目前阶段做数据分析使用Python更高效,方便一点。
希望我作为数据分析师的经验能对你有帮助
1、数据分析的本质
数据分析是指用适当的统计方法对收集的大量数据进行数据分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程,最后再通过得到的结论应用到行业中解决实际问题。
简单概括来说数据分析就是-- 处理数据然后推进优化现实工作。
数据分析应用在各行各业,互联网,工业,咨询行业等,有一个共同点,数据分析都是为业务服务的,用于解决实际运营中出来的问题,或者探索业务可优化的空间。
明白了这一点,就知道数据分析不是目的,数据分析的结果产出对业务的实际提升和优化才是目的,数据分析只是一种解决的方法,既然是方法,我们就要考虑它的效果,成本(学习成本,使用成本)等。
2.数据分析的技能要求
以现在最热门的互联网行业的数据分析而言,随便从招聘网站上截取部分应届生数据分析师招聘JD,选取应届生是因为相对要求低一点,对题主想要入门应该更有参考下价值。
不同公司业务不同,对于“岗位职责”先可以不用太关注,我们这里主要看“任职资格”这一部分,关于技能方面,可以看到有SQL,Python/R,Spark,hive,BI工具等。
看起来需要掌握的很多,那我们再来通过大数据的方法看一下,获取招聘网站上的招聘要求,根据工具关键词出现的频率,绘制成数据分析所需工具词云图:
可以看到,Excel,sql,python,PPT,hive,spss等出现的评率最高,同时可以可以看到还有很多其他的工具技能要求,但这几个出现频率最高的肯定是基本要求,那么是否这些工具我们都需要掌握呢,这个根据两个方面,一是你所处的工作阶段,二是作为数据分析师的不同方向。
我这里从数据分析方法的角度将数据分析方向分为三个:业务数据分析,数据挖掘分析,大数据分析。将每个方向对应的工具和方法做成思维导图如下:
可以见到,每个方向所对应的主要工具要求都不一样,一般来说,从业务数据分析》数据挖掘分析》大数据分析的技能门槛是逐步提高的,而且技能要求也是叠加的,也就是说例如数据挖掘分析师也需要掌握业务数据分析的工具和方法。
但这并不是数据分析师的发展路径,这只是数据分析不同的方向,如果对业务数据分析非常感兴趣且工作非常有成效,有很好的数据分析思维,那么完全可以往业务方向发展,只掌握SQL,EXCEL,PPT等成为商业分析师和集团战略分析师也是没有问题的,所以根据自己的情况,不用过分追求技术,别忘记,数据分析是为业务服务的!。
根据以上部分我们可以总结回答下题主的第一个问题(数据分析需要的技术),结合上图,可以归纳为描述性统计分析技术(业务数据分析),探索性统计分析技术(数据挖掘,大数据分析),数据可视化(将数据分析结果图表化,撰写报告用或汇报用)。
3.Python
既然题主提出Python和J***a的对比,说明对编程语言和数据分析还是有一定了解的,结合上面2部分的分析,题主可能实际想知道的是Python和J***a哪一个更适合做探索性的数据分析(数据挖掘和大数据分析),做简单的探索性分析其实用SPSS和R语言等一样可行。
但探索性数据分析里目前非常重要且流行的一个方法是机器学习,目前机器学习的主要框架如Tensorflow, sklearn等均是基于Python语言,因为应用广泛且被证明是高效可行的,所以目前来看使用成本相对较低,另外考虑到公司里的团队合作,使用同样的编程语言,团队交流合作也会更加高效。
另外涉及学习成本,Python出名的灵活便捷使其成为数据分析的首选,使用Python做数据分析,掌握基本语法之后,学会使用Numpy,Pandas,matplotlib等库之后就可以开始数据分析,实现同样的数据分析功能,先比于J***a, Python用更少的代码即可实现, 另外Python的众多数据分析相关的开源库也提供了很好的数据分析平台。
而J***a并非在数据领域很少使用,相反它是大数据平台的基础,例如Hadoop等大数据平台是基于J***a, 但这部分更多的是数据开发和数据仓库方向的技术开发的内容,与数据分析有较大区别。即使是大数据分析师,在使用大数据平台时,掌握Hive sql 也能完成取数要求,并不需要掌握J***a。
综上,数据分析技术因数据分析方向和阶段各异,主要是统计分析和数据可视化,现阶段Python比J***a更适合做数据分析。谢谢
到此,以上就是小编对于数据分析目的的问题就介绍到这了,希望介绍关于数据分析目的的2点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。