大数据数据分析-大数据数据分析师需要考什么书

nihdff 2024-09-24 数据分析 62 views

扫一扫用手机浏览

文章目录 [+]

大家好,今天小编关注一个比较有意思的话题,就是关于数据数据分析问题,于是小编就整理了3个相关介绍大数据数据分析的解答,让我们一起看看吧。

大数据数据分析-大数据数据分析师需要考什么书
(图片来源网络,侵删)
  1. 专科的大数据分析是什么?
  2. 大数据开发和数据分析有什么区别?
  3. 如何进行大数据分析及处理?

专科的大数据分析是什么

一般要学计算机网络技术、J***a程序设计、路由交换技术、计算机网络技术、大数据可视化技术、数据***集与分析技术、web前端设计等。

本专业主要面向企事业单位,从事大数据系统搭建与运维、大数据***集与存储、大数据处理与分析、数据库管理与维护、大数据平台开发、web前端设计等相关工作。适合岗位如大数据***集工程师,大数据运维工程师、大数据可视化工程师、大数据分析工程师、大数据开发工程师等。

大数据开发和数据分析有什么区别?

我们来从技术角度和薪资角度全面进行分析,方便你的选择

技术区别

在做选择之前,需要了解两者的不同,然后再结合自身已有的基础和兴趣做决定。

1、大数据开发类的岗位对于code能力、工程能力有一定要求,这意味着你需要有一定的编程能力,有一定的语言能力,然后就是解决问题的能力,因为大数据开发会涉及到大量的开源的东西,而开源的东西坑比较多,所以需要你能够快速的定位问题解决问题,如果是零基础,适合有一定的开发基础,然后对于新东西能够快速掌握。

2、如果是大数据分析类的职位,在业务上,需要你对业务能够快速的了解、理解、掌握,通过数据感知业务的变化,通过对数据的分析来做业务的决策,在技术上需要有一定的数据处理能力,比如一些脚本的使用、sql数据库的查询,execl、sas、r等工具的使用等等。在工具层面上,变动的范围比较少,主要还是业务的理解能力。

所以,如果是非理工科出身,编程能力较差,但是对业务的理解能力还可以的话,其实是可以选择数据分析类的。

除此之外,从薪酬上看,开发类的薪酬会略大与数据分析类的,这是由于岗位成本造成的,当然这只是一般情况下,任何领域的高端人才都是值钱的。

数据开发是基础,数据分析师生化,是对于开发的数据进行一定的研究和分析,然后得出数据背后的整体的现象和潜在的商业机遇,这二者是相互贯通的,对于我们的整体的生活也是各有利弊。

如果说这二者哪个好一点,只能说数据开发偏向于程序,数据分析偏向于数学

薪资区别

1

大数据开发

作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。在美国,大数据工程师平均每年薪酬高达17.5万美元;

大数据开发工程师在一线城市和大数据发展城市的薪资是比较高的。

2

大数据分析

大数据分析同样作为高收入技术岗位,薪资也不遑多让,并且,我们可以看到,拥有3-5年技术经验的人才薪资可达到30K以上

最后,无论你是做大数据开发还是分析,都是高薪的技术岗位,最重要的是修炼好自己的技术。

转自CSDN

如何进行大数据分析及处理?

谢谢邀请回答,作为大数据领域深耕多年的大数据从业者很乐意来回答这个问题。

首先要接收数据,汇集数据。***用flume,scribe等都可以。原始数据汇集到hadoop后需要进行etl,数据清洗处理,可供选择的有mr,spark等。最后处理完毕的数据结构化到数据仓库,如hive。

然后就可以真正进行数据分析,挖掘,和机器学习了。比如根据数据对各个维度进行统计,然后出来分析结果。挖掘是对数据进行统计,然后进行有规则的挖掘,比如说人物画像。有了这么多的数据以后就可以利用机器学习对数据进行特征提取得到更有价值的数据结果。

谢谢大家。


到此,以上就是小编对于大数据数据分析的问题就介绍到这了,希望介绍关于大数据数据分析的3点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。

转载请注明出处:http://www.dataocan.com/43031.html

相关文章