数据分析eviews(数据分析师证书怎么考)
怎么用Eviews进行数据分析呢? 打开电脑,找到桌面上的Eviews软件,设置工作文件,点击文件左上角——新建——工作文件,填写...
扫一扫用手机浏览
大家好,今天小编关注到一个比较有意思的话题,就是关于大数据分析处理平台的问题,于是小编就整理了3个相关介绍大数据分析处理平台的解答,让我们一起看看吧。
大数据时代,农业***数据来源广泛、种类繁多、数据量庞大且内容形式多样,其特点决定了数据产生源头的多异性和覆盖性。农业数据多异性表示为数据包含如气压、浓度、温度、湿度甚至光线、声音、气味等不同类型的数据,数据广泛复杂。本文从数据收集、数据处理、主数据管理平台建设、数据交换与共享平台建设、数据访问平台建设几个方面来对农业大数据平台建设进行分析。
一、数据收集与处理
1、各类农业信息***数据的收集,汇集到信息收集池
①市县农委现有数据,如农产品质量监管、农产品质量追溯、农业投入品监管、动监所执法、渔业数字化、三农项目管理等数据;
②部省相关数据,如三品一标、农业投入品等数据;
③***部门相关数据,如气象、环境、工商、防汛等数据;
④机构改革后,农办、发改、财政部门相关数据;
⑤其他下一步收集的数据,如休闲观光客源、土壤质地、森林植被等数据。
2、制定统一数据标准,数据加工处理,建立数据中心
①信息标准平台建设
建设一套信息标准是消除信息孤岛的根本方法,也是本项目建设的一个重点。整个平台的数据表示需要按照一定的标准编码,方便平台内数据和行业之间数据流通。建设标准应该按照国家最新《农业行业代码》进行标准体系的建设。信息标准的建设内容主要包括数据标准、编码标准、接口标准和应用标准,其是实现农业信息化***共享和信息系统得到协同发展的基础。
②中心数据库建设
中心数据库主要用于存储与管理原有数据库处理后的相关数据、新建系统的相关数据以及新建数据库的表和视图等。考虑到为上层应用提供的访问接口和功能侧重不同,存储与管理软件主要包括文件系统和数据库。在农业大数据环境下,最适用于当前的技术是分布式文件系统与分布式数据库。
大数据吃cpu。
大数据买个高配CPU + 大点的内存就对了。 基本上除了使用卷积网络的时候需要GPU并行计算之外,其余的绝大部分场景都用不到GPU,使用多核计算的场景反而更多。
对于显卡来说,不做设计,不玩游戏,那数据预算与显卡性能几乎没有一点关系,尽可能把cpu的性能往上提,这样可以加快运算速度。
随着各个企业的不断发展,企业的数据量不断的增加。企业的竞争压力也在不断的加大,利用数据分析平台来增加企业的竞争力,已经成为各个企业的信息化建设的核心环节。数据分析,我认为其含义就是从数据中提取信息创造价值。因为数据本身的价值是无法直接可见的,但是通过各种数据计算和分析,可以将人们无法注意到的信息从数据中提取出来,创造价值。那么具体如何搭建数据分析平台呢?我认为应从一下几个方面:
1.分析价值:明确数据分析的价值,通过大数据的分析,能够快速地发现消费者的需求变化和市场发展趋势,从而帮助企业及时做出正确的决策,从而使企业在市场上拥有更强的竞争力和不断创新的能力。
2.数据源头:有可供数据分析进行数据获取的平台。当今的IT信息化系统都在不断的建设当中,在数据分析时需要对各种不同种类来源的数据进行分析。这些来源有可能是系统内部的日志数据,也有可能是来源于其他接口的数据等等。
3.数据处理:从数据源中***集各种符合企业需求的数据,经过验证、清洗、并转化为所需格式后,储存到一个合适的持久化储存层中。
4.数据展现:将各个不同分析算法处理过的结果进行可视化展示。将数据从预先计算汇总的结果数据中读取出来,并用一种友好界面或者表格的形式展示出来,这样便于企业内部非专业人员对数据分析结果的理解。
到此,以上就是小编对于大数据分析处理平台的问题就介绍到这了,希望介绍关于大数据分析处理平台的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。